Residual Connections Encourage Iterative Inference

نویسندگان

  • Stanislaw Jastrzebski
  • Devansh Arpit
  • Nicolas Ballas
  • Vikas Verma
  • Tong Che
  • Yoshua Bengio
چکیده

Residual networks (Resnets) have become a prominent architecture in deep learning. However, a comprehensive understanding of Resnets is still a topic of ongoing research. A recent view argues that Resnets perform iterative refinement of features. We attempt to further expose properties of this aspect. To this end, we study Resnets both analytically and empirically. We formalize the notion of iterative refinement in Resnets by showing that residual architectures naturally encourage features to move along the negative gradient of loss during the feedforward phase. In addition, our empirical analysis suggests that Resnets are able to perform both representation learning and iterative refinement. In general, a Resnet block tends to concentrate representation learning behavior in the first few layers while higher layers perform iterative refinement of features. Finally we observe that sharing residual layers naively leads to representation explosion and hurts generalization performance, and show that simple existing strategies can help alleviating this problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multineuronal activity patterns identify selective synaptic connections under realistic experimental constraints.

Structured multineuronal activity patterns within local neocortical circuitry are strongly linked to sensory input, motor output, and behavioral choice. These reliable patterns of pairwise lagged firing are the consequence of connectivity since they are not present in rate-matched but unconnected Poisson nulls. It is important to relate multineuronal patterns to their synaptic underpinnings, bu...

متن کامل

Multineuronal activity patterns identify selective synaptic connections

25 26 Structured multineuronal activity patterns within local neocortical circuitry are 27 strongly linked to sensory input, motor output, and behavioral choice. These reliable 28 patterns of pairwise lagged firing are the consequence of connectivity since they are not 29 present in rate-matched but unconnected Poisson nulls. It is important to relate 30 multineuronal patterns to their synaptic...

متن کامل

Residual norm steepest descent based iterative algorithms for Sylvester tensor equations

Consider the following consistent Sylvester tensor equation[mathscr{X}times_1 A +mathscr{X}times_2 B+mathscr{X}times_3 C=mathscr{D},]where the matrices $A,B, C$ and the tensor $mathscr{D}$ are given and $mathscr{X}$ is the unknown tensor. The current paper concerns with examining a simple and neat framework for accelerating the speed of convergence of the gradient-based iterative algorithm and ...

متن کامل

Bayesian Networks Illustrate Genomic and Residual Trait Connections in Maize (Zea mays L.)

Relationships among traits were investigated on the genomic and residual levels using novel methodology. This included inference on these relationships via Bayesian networks and an assessment of the networks with structural equation models. The methodology employed three steps. First, a Bayesian multiple-trait Gaussian model was fitted to the data to decompose phenotypic values into their genom...

متن کامل

Iterative Algorithms for Graphical Models 1

Probabilistic inference in Bayesian networks, and even reasoning within error bounds are known to be NP-hard problems. Our research focuses on investigating approximate message-passing algorithms inspired by Pearl’s belief propagation algorithm and by variable elimination. We study the advantages of bounded inference provided by anytime schemes such as Mini-Clustering (MC), and combine them wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.04773  شماره 

صفحات  -

تاریخ انتشار 2017